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Abstract We propose a new approach for investigating the performance of managed

funds using wavelet analysis and apply it to an Australian dataset. This method, applied to

a multihorizon Sharpe ratio, shows that the wavelet variance at the short scale is higher

than that of the longer scale, implying that an investor with a short investment horizon has

to respond to every fluctuation in the realized returns, while for an investor with a much

longer horizon, the long-run risk associated with unknown expected returns is not as

important as the short-run risk. Using multihorizon Sharpe ratios of six groups of managed

funds, we find that none of the fund groups are dominant over all time scales.
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1 Introduction

The Sharpe ratio is an extensively used performance evaluation measure by practitioners in

a mean-variance framework (Sharpe 1966, 1994). Due to its wide practical popularity,
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there has been ongoing research to enhance the Sharpe ratio and improve/robustify its

application. For example, Modigliani and Modigliani (1997) created a variant they called

the ‘‘risk-adjusted performance’’ measure which scales a fund’s return by the ratio of the

market risk to fund risk. In other words the ‘‘M2’’ metric asks the question: if the fund

portfolio’s risk had been the same as the market portfolio, what returns would the fund

have achieved?

Other papers have sought to explore the statistical and inferential properties of the

Sharpe ratio. A time-honoured example of this is Jobson and Korkie (1981), in which

(among other things) the low power of such testing was highlighted. More recently, others

have followed in this vein—see for example, Owen and Rabinovitch (1999). Recently we

have Lo (2002) who derives explicit distributional properties of the Sharpe ratio under

different scenarios.1 More recently, Knight and Satchell (2005) investigated the exact

properties of the Sharpe ratio when prices are log-normal and developed alternative

unbiased estimators, depending on the definition of returns employed. Two further

examples of different strands from the literature focused on the Sharpe ratio are: Dowd

(1999) who is concerned with building an integrated framework of financial risk man-

agement based on the ‘‘Sharpe rule’’ and Ziemba (2005) who develops a symmetric

downside-risk Sharpe ratio.

Nielson and Vassalou (2004) represents another recent and very relevant example from

this literature that seeks to enhance the usefulness of Sharpe ratios. Specifically, they

provide a continuous time version of the Sharpe ratio and prove that the one-period variant

commonly used by practitioners fails to adequately capture the changing volatility of the

return series. They show that the continuous time version is equal to the ordinary Sharpe

ratio plus half of the volatility of the fund.

As indicated in Levy (1972), the Sharpe ratio is sensitive to the investment horizon. The

holding period that is relevant for portfolio allocation is the length of time investors hold

any stocks or bonds, no matter how many changes are made among the individual issues in

their portfolio (Siegel 1998, p. 29). Consider an investment company with a large number

of investors and money managers. Clearly, the investors and the money managers make

decisions over different time scales. Suppose, for simplicity, that the investment horizon of

an investor is one year and that the investment company reviews the performance of the

money manager every quarter, using the Sharpe ratio. The money manager will therefore

focus on the three-month performance of a portfolio, while the investor will concentrate on

the one-year performance. Thus, for this investor, information provided by the money

manager may not be relevant. Indeed, sometimes it could even be misleading.

To provide the best service for diversified investors, the Sharpe ratio needs to be

constructed over different investment horizons (Kim and In 2005a). In other words, the

horizon sensitivity of the Sharpe ratio is a very important issue in evaluating the perfor-

mance of one or more portfolios. An investor might not be interested in short-term

performance of portfolios. Indeed, institutional investors such as pension funds have a very

long investment horizon. A common practice in measuring the n-period Sharpe ratio is to

use the expected return and standard deviation of the one-period investment by taking the

corresponding scaling quantity into account (see Levy 1972). This n-period Sharpe ratio is

1 Lo’s (2002) efforts have however, come under close scrutiny regarding the generalizability of his analysis.
For example, Wolf (2003) highlights that the main distributional result for the Sharpe ratio in Lo (2002)
critically assumes normality of returns. As such, the confidence intervals circumstances will be biased in the
direction of being too narrow. In response, Lo (2003) clarifies the more general result for the more realistic
setting of non-normal distributions.
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a complex, nonlinear function of the expected return and standard deviation of the one-

period investment. This type of scaling is only valid if the underlying data is identically

and independently distributed (Hodges et al. 1997), which may not be the case for certain

financial time series.

We propose a new approach for investigating the performance of managed funds using a

wavelet analysis of the multihorizon Sharpe ratio (Kim and In 2005a).2 Our study extends

the current literature in two important ways. First, to the best of our knowledge, the current

paper is the very first to investigate the performance of managed funds, using wavelet

analysis. As such, this study helps to deepen our understanding of the true relationship

between risk and return of managed funds over different time scales. The results therefore

should be of interest to both investors and fund managers.

Second, a key premise underlying the research in this paper is that the relationship

between financial variables may be better expressed in terms of restrictions to given time

scales. From the empirical analysis of a sample of Australian managed funds, we find that

the wavelet variance at the short scale is higher than that of the longer scale, implying that

an investor with a short investment horizon has to respond to every fluctuation in the

realized returns, while for an investor with a much longer horizon, the long-run risk

associated with unknown expected returns is not as important as the short-run risk. Using

the multihorizon Sharpe ratios for six different groups of managed funds, we find that none

of the fund groupings are dominant over all time scales, indicating that evaluating the

performance of the managed funds depends on the investment horizon.

The remainder of the article is organized as follows: Section 2 presents some institu-

tional features of the Australian managed funds sector and also a review of the Australian

fund performance literature. In Sect. 3, we discuss how to derive the multihorizon Sharpe

ratio using wavelet analysis. Data and the empirical results are discussed in Sect 4. In Sect.

5, summary and concluding remarks are presented. Finally, a technical appendix presents

the econometric methodology for wavelet analysis.

2 Australian managed funds sector

The Australian managed funds sector, with more than US $430 billion dollars of assets, is

the fourth largest managed funds sector in the world.3 However, research on the perfor-

mance of Australian managed funds is relatively sparse. The sector is broadly divided into

two categories, namely, wholesale and retail funds. The division is based on the nature of

subscription into managed funds. In the case of wholesale funds, investors contribute

indirectly to the funds. The trustees of the managed fund take the decision of investment on

behalf of the investors. Thus, wholesale funds are pooled investments. Retail funds on the

other hand receive money directly from the investors. Due to the pooled nature of

investment, wholesale funds are larger than retail funds and incur lower operating costs.

This is also reflected in the fees charged by these funds. The management expense ratio

(MER) of wholesale funds is generally lower than retail funds. The product lines of

managed funds includes superannuation, non-superannuation and life insurance products.

2 In the recent times there have been a few new approaches to measure managed funds performance. For
instance, Chang et al. (2003) measure hedging timing ability of fund managers along with their market
timing and security selection skills.
3 Investment and Financial Services Association Limited (IFSA, Australia).
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Australian fund performance studies by and large are replications of US studies. Bird

et al. (1983) found that only one out of 27 managers showed some evidence of superior

performance through security selection skills. Sinclair (1990) using Treynor and Mazuy

(1966) and Henriksson and Merton (1981) models on 16 pooled superannuation funds for

83 monthly observations found evidence of funds exhibiting positive alphas. However,

Hallahan and Faff (1999) documented little evidence of successful market timing of

Australian equity trust managers. Marisetty and Ariff (2003) using the Lee and Rahman

(1990) measure, found no evidence of market timings skills for a sample of 90 retail funds.

Benson and Faff (2003) tested the performance of 70 Australian international equity trusts.

They found that international equity trusts during 1990–1999 exhibited negative timing

and selection skills. Sawicki and Ong (2003) applying the Ferson and Schadt (1996)

methodology on 97 wholesale Australian superannuation funds, from 1983–1995, found

that the negative market timing reported in earlier studies will disappear after controlling

for changing market conditions, similar to Ferson and Schadt (1996). Gallagher (2001)

evaluated the market timing and selection skills of 33 wholesale superannuation fund

managers from 1992–1998 and found no evidence of superior timing and selection skills.

Holmes and Faff (2004) found negative performance for Australian multi-sector funds. In

summary, these results are broadly consistent with US based studies.

3 Multihorizon Sharpe ratio using wavelet analysis4

3.1 Sharpe ratio basics

Although over the years much academic work has been devoted to performance mea-

surement, practitioners typically use two popular performance measures: the Sharpe ratio

and/or Jensen’s alpha. It is well known that the traditional Sharpe ratio is the appropriate

measure of performance of a portfolio if the distribution of its rate of return is normally

distributed and Sharpe (1994) shows the fundamental case for using the Sharpe ratio.

Suppose we have a portfolio, i, with a return, Ri and a risk-free asset, denoted by f, with

return Rf. The Sharpe ratio (SR for portfolio i) can be defined by:

SRi ¼
�Ri � �Rf

ri
ð1Þ

where �Ri is the mean return of the portfolio, �Rf is the mean return on the risk-free asset and

ri is the standard deviation of the portfolio return.

Assuming all asset returns to be normally distributed, the CAPM tells us that in equi-

librium the highest attainable Sharpe ratio is that of the market index. A ratio higher than

that therefore indicates superior performance. However, many financial time series do not

follow the normal distribution. Possible measures of performance when returns are not

distributed normally are discussed in the previous literature (see for example, Leland 1999,

Stutzer 2000 and Kazemi et al. 2003). In particular, Kazemi et al. (2003) derive the

adjusted Sharpe ratio by transforming the distribution of the portfolio returns so that its

distribution will match that of a benchmark. This approach is useful because it does not

require the normality of the returns.

4 This section draws heavily on Kim and In (2005a).
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Suppose that we have a portfolio, i, with a return, Ri, and a benchmark, B, with a return,

RB. The adjusted Sharpe ratio (ASR) for the portfolio, i, can be defined as follows:

ASRi ¼
�RB � �Rf

rB
þ ð1þ

�Rf Þð1� PÞ
rB

ð2Þ

where

P ¼ E Fð1þ RiÞ½ �
1þ Rf

ð3Þ

where F(1 + Ri) indicates a function that matches the distribution of the portfolio returns

with that of the benchmark returns; E(�) means expectation under the risk-neutral proba-

bility distribution; and P is the current value of F(1 + Ri), respectively.5 Note that the

Sharpe ratio of the benchmark is the same as the Sharpe ratio, Eq. 1. In other words, the

difference between the Sharpe ratio of the benchmark and the adjusted Sharpe ratio of the

portfolio is the term ð1þ �Rf Þð1� PÞ=rB. In the adjusted Sharpe ratio, the value of P plays

a crucial role in comparing the performance of a portfolio. Specifically, if P \ 1(P [
1)[P = 1], the portfolio is a better (inferior) [equally performing] investment than (to)

[with] the benchmark.

3.2 Wavelet adjusted Sharpe ratio

Financial security markets are complex systems which comprise a wide range of investors

with different time horizons, thereby impacting their investment decision-making pro-

cesses. As a consequence, observed returns as signals can be examined across different

resolution levels, to deduce information regarding investors’ time horizons. In this context,

wavelet analysis is a natural tool for investigating portfolio allocation decisions, as

wavelets allow us to decompose a signal into multiresolution components: namely, ‘fine’

and ‘coarse’ resolution components.

By design, the wavelet’s strength rests on its ability to simultaneously localize a process

in time and scale. At high scales, the wavelet has a small centralized time support enabling

it to focus on short-lived time phenomena such as jumps. At the other end of the spectrum,

low scales provide the wavelet with a large time support allowing it to identify long-term

periodic behaviour. By moving from low to high scales, the wavelet zooms in on the

behaviour of a process at a particular point in time, identifying ‘micro’ features such as

5 For more details of the derivation of the adjusted Sharpe ratio and its algorithm, see Kazemi et al. (2003).
To calculate the adjusted Sharpe ratio, it is important to match the distribution of a portfolio to that of
benchmark. To do so, the first step is to estimate an approximation of function F(1 + Ri). Kazemi et al.
(2003) show that after transforming the return of a portfolio, its distribution is almost same as that of
benchmark. Based on the function F(1 + Ri), we estimate the value of P. In our paper the calculated values
of P are subject to sampling variation. For this reason, we calculate the statistical inference using bootstrap
methods by generating 3,000 random returns from the risk neutral distribution. The average across repli-
cations is very similar to the original estimates of the value of P, which means that no correction for small-
sample bias is needed (we do not present the results but they are available on request).
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singularities, jumps, and cusps. Alternatively, the wavelet can zoom out to reveal the long,

smooth features of a series (Nielson and Frederiksen in press).6

Given the adjusted Sharpe ratio, the multihorizon Sharpe ratio can be constructed using

the wavelet variance and local average at scale kj as follows:

ASRw
i ðkjÞ ¼ SRw

BðkjÞ þ
ð1þ �Rf ðkjÞÞð1� PðkjÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffi

~v2
BðkjÞ

p ð4Þ

where SRw
BðkjÞ ¼

�RBðkjÞ � �Rf ðkjÞ
ffiffiffiffiffiffiffiffiffiffiffiffi

~v2
BðkjÞ

p ð5Þ

where �RBðkjÞ and �Rf ðkjÞ are the mean values of the benchmark portfolio return and the

risk-free rate at scale kj. These mean values are calculated using the scaling coefficients,

following Gençay et al. (2003). In this specification, SRB
w and ASRi

w indicate the wavelet

multiscale Sharpe ratio of the benchmark portfolio and the adjusted wavelet multiscale

Sharpe ratio of a portfolio, which can be varying depending on the wavelet scales (i.e.,

investment horizons). The null hypothesis is: H0: P(kj) [ 1 (i.e. no out-performance of the

portfolio at time scale kj.) versus the alternative hypothesis of interest, H1: P(kj) \ 1,

(namely that the portfolio outperforms the benchmark at time scale kj). Thus, the Sharpe

ratios at different scales represent the performance measure of a portfolio at various

frequencies (in other words, at various time scales). Moreover, the multihorizon Sharpe

ratio has an ability to capture performance of a portfolio at various frequencies, compared

to the traditional Sharpe ratio.

4 Data and empirical results

4.1 Data

Managed funds in Australia can be broadly classified as wholesale and retail funds based

on the nature of contribution. If the contribution to the fund is made directly by the investor

with voluntary choice they are termed retail funds. In the case of wholesale funds con-

tribution to the fund is by the employer of the investor. The data employed are 36

wholesale managed fund monthly returns and 59 retail managed fund monthly returns

obtained from the ASSIRT database from November 1990 to December 2001. Our sample

includes all funds that exist during the last 15 years. Our sample clearly has survivorship

bias. Such bias is unavoidable in our study given the very nature of our analysis—the

multi-scaling approach we use requires both short and long horizon fund returns. While

survivorship is a weakness of our study, it is a necessary ‘evil’ in order to make the long

horizon part of the analysis sensibly viable.

We choose to perform our analysis according to size groupings, given the extensively

documented evidence that size is a key characteristic of managed funds. To construct the

large, medium and small wholesale fund returns, we first sort the wholesale fund returns by

their size. Using this size ranking, the largest 12 wholesale funds are allocated into the

‘‘large’’ managed funds group, whose returns are calculated by an equally weighted

average. The medium and small wholesale fund returns are calculated using the same

6 More detailed explanation of wavelet analysis and the technical details of how we implement wavelet
decomposition, is provided in the technical appendix.
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approach. Similarly, the large retail fund returns are calculated by an equally weighted

average of the largest 19 retail funds. Thus, we have six return series representing six

different size based groups. To calculate the excess return, the risk-free returns are

required. In this analysis, we use the one-month deposit rate obtained from Datastream.7

Table 1 presents several summary statistics for the monthly data of six fund group

returns (large, medium, and small wholesale funds, large, medium, and small retail funds)

and risk-free returns. As shown in Panel A of Table 1, the mean values are all positive and

close to zero. Nevertheless, these figures show that the small fund returns (wholesale and

retail) are higher than the counterpart large and medium fund returns. Another noticeable

observation is that variance of the small fund returns are higher than those of the large and

medium fund returns, implying that the higher the return, the higher the risk. Also it is

noted that over the sample period wholesale funds historical average returns are slightly

higher than retail funds.

The measures for skewness, kurtosis and Jarque-Bera statistics are also reported to

check whether monthly data are normally distributed. The sign of skewness varies; how-

ever, the magnitudes depend on the particular security. The Jarque-Bera statistics also

indicate that all data are not normally distributed. The LB(15) for the squared return series

is highly significant for all assets, suggesting the possibility of the presence of autore-

gressive conditional heteroskedasticity.8 Notice that due to the non-normality of all returns,

we use the adjusted Sharpe ratio instead of the traditional Sharpe ratio.

We report the unconditional contemporaneous correlation coefficients among the risk-

free return and the six Australian managed funds in Panel B of Table 1. The correlation

ranges from 0.816 between the small wholesale fund and the small retail fund to 0.988

between the large wholesale fund and the medium wholesale fund. Overall, it is observed

that the correlation coefficients between the Australian managed funds are very high.

4.2 Empirical results

The purpose of this article is to examine the performance of the sample of Australian

managed funds. To do so, we use the multihorizon Sharpe ratio using wavelet analysis and

we decompose our data up to scale 5.9 Since we use monthly data, scale 1 represents

2–4 month period dynamics. Equivalently, scale 2, 3, 4, and 5 correspond to 4–8, 8–16,

16–32, and 32–64 month period dynamics, respectively.10

First, we examine the variances of the six returns against various time scales. An

important characteristic of the wavelet transform is its ability to decompose (analyze) the

variance of the stochastic process. Figure 1 illustrates the wavelet variance of the six series

against the wavelet scales.11 In this figure, instead of presenting the exact number of the

7 The Australian 13-week Treasury notes were not used for the risk-free rate since they were discontinued in
August 2000.
8 LB(15) is the Ljung-Box statistic for up to 15 lags, distributed as v2 with 15 degrees of freedom.
9 Considering the balance between the sample size and the length of the wavelet filter, we settle with the
Daubechies extremal phase wavelet filter of length 4 (D(4)). For the various wavelet filters, see Gençay et al.
(2002, pp. 114–115).
10 According to Gençay et al. (2003), the spectrum of raw monthly return series contains all frequencies
between zero and 1/2 cycles, equivalent to the 0 to 2-month period in our data frequency.
11 For statistical inference, we also calculate the confidence interval for six series. However, for the sake of
a clear presentation we do not plot the confidence intervals.
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wavelet variances, the specific contributions to sample variance of each scale are pre-

sented. Percival and Walden (2000) and In and Kim (2006) show that a wavelet variance in

a particular time scale indicates the contribution to sample variance. For example, the

sample variances are 0.253 for the large wholesale managed funds, 0.245 for the medium

wholesale funds, and 0.336 for the small wholesale funds, respectively, and 55.08%,12

55.81%, and 59.09% of the total variances of the three fund returns, respectively, are

accounted for by the lowest scale (scale 1). This result implies that an investor with a short

investment horizon has to respond to every fluctuation in the realized returns, while for an

investor with a much longer horizon, the long-run risk is considerably less. The retail fund

returns show a similar pattern to the wholesale fund returns.

It is of interest to compare the annualized wavelet variances (risks) over the different

time scales. In financial valuation models, it is commonly required to calculate an annu-

alized risk coefficient. Under the random walk model, the risk of an asset at any time scale

is estimated by the linear rescaling of the risk from other time scales. Conventionally, the

risk is scaled at the square root of time. Our results are presented in Fig. 2. As observed in

the figure, the annualized variances decrease as the time scale increases, with a smoother

decreasing pattern. This result implies that an investor with a short investment horizon has

to respond to every fluctuation in the realized returns, while for an investor with a much

Wholesale funds
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Fig. 1 Estimated wavelet variances. (a) Wholesale funds. (b) Retail funds. Note: The y-axis indicates the
wavelet variance and the x-axis indicates the wavelet time scale. To calculate the wavelet variance of each
portfolio, we decompose each time series up to level 5, using the Daubechies extremal phase wavelet filter
of length 4 (D(4)). d1, d2, d3, d4, and d5 represent 2–4, 4–8, 8–16, 16–32, and 32–64 month period
dynamics, respectively

12 These figures are calculated by the normalization of wavelet variance using the sample variance. For
more details, see In and Kim (2006).
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longer horizon, the long-run risk is significantly less. Overall, the returns on small fund

returns are more volatile than those of the large and medium fund returns for all wavelet

scales, while the annualised wavelet variances for the large and medium funds do not show

much difference.

Turning to our main purpose, the multihorizon Sharpe ratios, using the large wholesale

fund returns as a benchmark, are presented in Table 2.13 Table 2 shows that the Sharpe

ratio for each fund return increases as the holding period is extended, except for scale 2

(d2). This result is consistent with Lo (2002). The Sharpe ratio for the large wholesale

managed fund returns is 0.26% for the first wavelet scale, equivalent to a 2–4 month

period, and increases to 38.01% at the longest wavelet scale, equivalent to a 32–64 month

period. A similar pattern is observed in the other asset returns. For example, the Sharpe

ratio of the small retail fund starts at 0.06% at the first wavelet scale, and rises to 35.50% at

the longest wavelet scale. This result simply indicates that the Sharpe ratio is not time

consistent. In other words, the trading strategy that leads to the most desirable portfolio for

a 2–4 month period (scale 1) and for four consecutive 2–4 month periods is not the same as

the strategy that gives the maximum Sharpe ratio for an 8–16 month period (scale 3),

suggesting that when the Sharpe ratio is used as a performance measure, the horizon effect

Wholesale funds
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b

Fig. 2 Estimated annualized wavelet variances. (a) Wholesale funds. (b) Retail Funds. Note: The y-axis
indicates the wavelet variance and the x-axis indicates the wavelet time scale. To calculate the wavelet
variance of each portfolio, we decompose each time series up to level 5, using the Daubechies extremal
phase wavelet filter of length 4 (D(4)). d1, d2, d3, d4, and d5 represent 2–4, 4–8, 8–16, 16–32, and 32–
64 month period dynamics, respectively

13 We choose to benchmark against the large wholesale funds because this achieves the twin objective of
having a ‘market like’ benchmark, while allowing a direct examination of the impact of fund size.
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should be taken into account. Overall, our results while consistent with those of Kim and In

(2005a), are different from those of Hodges et al. (1997). The latter researchers found that

the Sharpe ratio eventually declines in all cases and that bonds become more attractive than

stocks for long holding periods.

Table 2 presents the relative rankings of the six fund groups over the wavelet scales, as

well as for the raw data. It is shown that that no single fund grouping dominates all others

over all time scales. For example, in the d1 case large (medium) wholesale (retail) are

ranked best. However, for d3 small funds are best, while for d5 small funds are best

amongst the wholesale groups only. These results imply that the performance of managed

funds critically depend on the investment horizon.

4.3 Summary and concluding remarks

Managed fund performance has long been of interest to financial economists, mainly

because of its implications for investors. This paper adopts a new approach to using the

multihorizon Sharpe ratio to evaluate the performance of six different groups of Australian

managed funds over various time scales. Although the Sharpe ratio has become an

important part of modern financial analysis, its applications have not been accompanied by

examination of the different investment horizons, which is an important factor for inves-

tors.14 In this article, we examine the multihorizon Sharpe ratio using wavelet analysis.

Wavelet analysis has the advantage of being able to decompose the time series over various

time scales. This advantage allows us to investigate the behavior of our data over multiple

horizons. This new approach is based on a wavelet multiscaling method that decomposes a

Table 2 Multihorizon Sharpe Ratio for Australian Retail and Wholesale Superannuation Funds

Wholesale funds(%) Retail funds(%)

Large Medium Small Large Medium Small

Raw data 16.03 16.23 15.71 11.36 10.15 11.41

d1 0.26 0.10 0.08 0.22 0.27 0.06

d2 –0.51 –0.97 –0.82 –0.60 –0.69 –0.68

d3 0.57 0.60 1.08 0.71 0.62 0.74

d4 8.89 9.25 8.10 7.27 7.43 7.01

d5 38.01 34.99 41.28 41.33 48.35 35.50

Note: The large wholesale fund is considered as a benchmark. The multihorizon Sharpe ratios of the other
managed fund returns are calculated using Eq 4. To calculate the multihorizon Sharpe ratio of each fund
return at scale kj, we decompose each time series up to level 5, using the Daubechies extremal phase wavelet
filter of length 4 (D(4)). d1, d2, d3, d4, and d5 represent 2–4, 4–8, 8–16, 16–32, and 32–64 month period
dynamics, respectively

14 The logic is as follows. Financial managed fund markets are heterogeneous and made of investors and
traders with different investment time horizons. Consider the large number of investors who trade in the
security market and make decisions over different time scales. One can visualize traders operating minute-
by-minute, hour-by-hour, day-by-day, month-by-month, and year-by-year. In fact, due to the different
decision-making time scales among traders, the true dynamic structure of the relationship between the
performance of the managed funds and risk factors will vary over different time scales associated with those
different horizons. Therefore, it is imperative to know that the true performances of the different managed
funds will only be revealed when the Sharpe ratio is decomposed by the different time scales or different
investment horizons.
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given time series on a scale-by-scale basis. Wavelet analysis has the advantage of being

able to decompose the time series over the various time scales. This advantage allows us to

investigate the behavior of our data over multiple horizons.

Our empirical results indicate that the wavelet variances of both the stock and bond

markets decrease as the wavelet scale increases, implying that an investor with a short

investment horizon has to respond to every fluctuation in the realized returns, while for an

investor with a much longer horizon, the long-run risk associated with unknown expected

returns is not as significant as the short-run risk. In addition, the Sharpe ratio at the long

scale is much higher than that at the short scale, implying that the Sharpe ratio is not time

consistent. This result is consistently confirmed by wavelet analysis. Since risk and value

(performance) are timescale-dependent concepts, any attempt to measure performance,

such as a Sharpe ratio, must take into account the investment horizon effect. Wavelets are

natural tools for this purpose.

Acknowledgments The authors thank an anonymous referee for helpful comments and are pleased to
acknowledge the support of the Australian Research Council, grant number DP0557172.

Technical appendix wavelet analysis

Wavelet analysis refers to the representation of a signal in terms of a finite length or fast

decaying oscillating waveform (known as the mother wavelet). Financial markets are

comprised of investors and traders with different investment time horizons—there is con-

siderable heterogeneity of investment time horizon. At the heart of most trading

mechanisms are the market makers. At the next level up are the intraday investors who carry

out trades only within a given trading day. Then there are day investors who may carry

positions overnight, and then short-term traders and finally at the top of the tree are long-

term traders. Overall, it is the aggregation of the activities of all investors for all different

investment horizons that ultimately generates market prices. Therefore, market activity is

heterogenous with each investment horizon dynamically providing feedback across the

different time scales (Dacorogna et al. 2001). The implication of a heterogenous market is

that the true dynamic relationship between the various aspects of market activity will only

be revealed when the market prices are decomposed by the different time scales or different

investment horizons. The main advantage of wavelet analysis is the ability to decompose a

time series, measured at the highest possible frequency, into several time scales.15

A major innovation of our paper is the introduction of a new approach—the wavelet

multiscaling method—for investigating the multihorizon Sharpe ratio. We achieve this

through an application to the performance of a sample of Australian managed funds. In this

section, we briefly review how to derive the wavelet coefficients and how to derive wavelet

variance over various time scales.

One useful way to think about wavelets is to consider wavelets and scaling filters.16 The

relationship between filter banks and wavelets is extensively discussed in Strang and

15 Wavelet analysis is relatively new in economics and finance, although the literature on wavelets is
growing rapidly. Applications in these fields include decomposition of economic relationships of expen-
diture and income (Ramsey and Lampart 1998a, b), systematic risk in the capital asset pricing model
(Gençay et al. 2003), the multiscale relationship between stock returns and inflation (Kim and In 2005b),
and a multiscale hedge ratio (In and Kim 2000).
16 According to Ramsey (2002), one can approach the analysis of the properties of wavelets either through
wavelets or through the properties of the filter banks.
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Nguyen (1996) and Percival and Walden (2000). Like conventional Fourier analysis,

wavelet analysis involves the projection of a signal onto an orthogonal set of compo-

nents—sine and cosine functions in the case of Fourier analysis and wavelets in the case of

wavelet analysis. Wavelet analysis enables us to decompose the data into several time

scales. To show the multiscale decomposition of a portfolio return series by wavelet

analysis briefly, we employ the simple Haar wavelet, which is the first17 wavelet filter.18

The Haar wavelet filter coefficient vector, of length L = 2, is given by

h ¼ ðh0; h1Þ ¼ ð1=
ffiffiffi

2
p

;�1=
ffiffiffi

2
p
Þ: The complementary filter to h is the Haar scaling filter

g ¼ ðg0; g1Þ ¼ ð1=
ffiffiffi

2
p

; 1=
ffiffiffi

2
p
Þ: These filters possess the following attributes:

X

l

hl ¼ 0;
X

l

h2
l ¼ 1; and

X

l

hlhlþ2n ¼ 0 for all integers n 6¼ 0: ðA:1Þ

X

l

gl ¼
ffiffiffi

2
p

;
X

l

g2
l ¼ 1; and

X

l

glglþ2n ¼ 0 for all integers n 6¼ 0: ðA:2Þ

Equation A.1 indicates the basic three properties of the wavelet filter, namely, it: (1)

sums to zero, (2) has unit energy, and (3) is orthogonal to its even shifts. The scaling filter

(Eq A.2) follows the same orthonormality properties of the wavelet filter, namely, having

unit energy and orthogonality to even shifts, but instead of differencing consecutive blocks

of observations, the scaling filter averages them. Thus, g may be viewed as a local aver-

aging operator.

Using the Haar wavelet filter coefficients h, when applied to a return series Rt, the

wavelet coefficients can be obtained by:

ffiffiffi

2
p

d1t ¼ h0Rt þ h1Rt�1; t ¼ 0; 1; . . .; T � 1: ðA:3Þ

The factor of
ffiffiffi

2
p

is required to ensure that the squared norm of the wavelet coefficients

is equivalent to the squared norm of the return series. From this equation, it is observed that

the wavelet coefficient d1t is a weighted difference between consecutive returns. In a

similar manner, the scaling coefficients can be obtained using the Haar scaling filter

coefficient vector g as follows:

ffiffiffi

2
p

s1t ¼ g0Rt þ g1Rt�1; t ¼ 0; 1; . . .; T � 1: ðA:4Þ

In contrast to d1, the scaling coefficients s1 are based on local averages (of length two)

of the original returns. Collecting both sets of coefficients into w = (d1, s1) yields the

high-frequency and low-frequency content from the original returns. To derive the higher

scale wavelet and scaling coefficients, it is necessary to calculate the higher scale

wavelet and scaling filter coefficients using the first scale wavelet and scaling filters, h
and g. To derive the scale 2 wavelet and scaling filters, let us define a filter

h0 ¼ ðh0; 0; h1Þ ¼ ð1=
ffiffiffi

2
p

; 0;�1=
ffiffiffi

2
p
Þ to be the Haar wavelet filter with a zero between the

two coefficients. The scale 2 Haar wavelet filter is calculated by:

17 In this context, ‘‘first’’ is used because the Haar wavelet is firstly developed among the various wavelet
filters.
18 Additional information regarding wavelet and scaling filters (including the Haar and longer compactly
supported orthogonal wavelets) and their properties may be found in Gençay et al. (2002).
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h2;i ¼ fg � h0ig ¼
X

L�1

j¼0

gjh
0
i�j; for i ¼ 0; . . .; 3; ðA:5Þ19

From this equation, we can obtain the scale 2 wavelet filter, h2 = (1/2,1/2,–1/2,–1/2)

with length L2 = 4. The wavelet coefficient d2 may be obtained using h2 via 2d2 = {h2*Rt}

where the factor of 2 is a normalization constant. The scale 2 Haar wavelet filter first

averages two pairs of returns and then proceeds to difference them. Thus, the wavelet

coefficients d2 are associated with changes on a scale of two. By defining

g0 ¼ ðg0; 0; g1Þ ¼ ð1=
ffiffiffi

2
p

; 0; 1=
ffiffiffi

2
p
Þ; the scale 2 Haar scaling filter is obtained using:20

g2;i ¼ fg � g0ig ¼
X

L�1

j¼0

gjg
0
i�j; for i ¼ 0; . . .; 3; ðA:6Þ

so that g2 = (1/2, 1/2, 1/2, 1/2). It is observed that g2 is a simple average of four con-

secutive returns. The scaling coefficients s2 may be obtained directly using g2 via 2s2 =

{g2*Rt}.

Analogously, the scale 3 wavelet and scaling coefficients may be obtained by increasing

numbers of zeros inserted between the wavelet and scaling filter coefficients such as h and

g with length L = 2. For example, h00 ¼ ðh0; 0; 0; h1Þ ¼ ð1=
ffiffiffi

2
p

; 0; 0;�1=
ffiffiffi

2
p
Þ and define

the scale Haar wavelet filter to be h3 ¼ ffg � g0ig � h00i g ¼ fg2 � h00i gwith the wavelet

coefficients:

h3 ¼
1
ffiffiffi

8
p ;

1
ffiffiffi

8
p ;

1
ffiffiffi

8
p ;

1
ffiffiffi

8
p ;
�1
ffiffiffi

8
p ;
�1
ffiffiffi

8
p ;
�1
ffiffiffi

8
p ;
�1
ffiffiffi

8
p

� �

with length L3 = 8. Generally, the length of a scale j wavelet filter can be calculated by

Lj = (2j–1)(L–1) + 1. Similarly, the scale 3 scaling filter coefficients are calculated as

g3 ¼ ffg � g0ig � g00i g ¼ fg2 � g00i gwhere g00 ¼ ðg0; 0; 0; g1Þ ¼ ð1=
ffiffiffi

2
p

; 0; 0; 1=
ffiffiffi

2
p
Þ; with

coefficients:

19 The series stop at 3. As can be seen above Eq. A.5 we define h0 ¼ ðh0; 0; h1Þ ¼ ð1=
ffiffiffi

2
p

; 0;�1=
ffiffiffi

2
p
Þ: If we

fully expand the equation (A.5), it has the following form:

When i ¼ 0; h2;0 ¼ g0h00 þ g1h0�1 ¼
1
ffiffiffi

2
p � 1

ffiffiffi

2
p þ 1

ffiffiffi

2
p � 0 ¼ 1

2
;

When i ¼ 1; h2;1 ¼ g0h01 þ g1h00 ¼
1
ffiffiffi

2
p � 0þ 1

ffiffiffi

2
p � 1

ffiffiffi

2
p ¼ 1

2

When i ¼ 2; h2;2 ¼ g0h02 þ g1h01 ¼
1
ffiffiffi

2
p �� 1

ffiffiffi

2
p þ 1

ffiffiffi

2
p � 0 ¼ � 1

2

When i ¼ 3; h2;3 ¼ g0h03 þ g1h02 ¼
1
ffiffiffi

2
p � 0þ 1

ffiffiffi

2
p �� 1

ffiffiffi

2
p ¼ � 1

2

In the above calculation, h–1 and h3 are considered as 0 because it is not defined. This happens when we
generalize notation using summation.

20 For other filters such as the Daubechies least asymmetric wavelet filter of length 8 (LA(8)), the con-
struction of the higher scale filters are the same as in this example. For instance, the scale 1 LA(8) scaling
filter, g, is (–0.0758, –0.0296, 0.4976, 0.8037, 0.2979, –0.0992, –0.0126, 0.0322). In this case, g0 is defined
as (–0.0758, 0, –0.0296, 0, 0.4976, 0, 0.8037, 0, 0.2979, 0, –0.0992, 0, –0.0126, 0, 0.0322). For the various
scaling filter coefficients, see Gencay et al. (2002, pp. 114–11).
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g3 ¼
1
ffiffiffi

8
p ;

1
ffiffiffi

8
p ;

1
ffiffiffi

8
p ;

1
ffiffiffi

8
p ;

1
ffiffiffi

8
p ;

1
ffiffiffi

8
p ;

1
ffiffiffi

8
p ;

1
ffiffiffi

8
p

� �

Similar to the calculation of the scale 2 wavelet and scaling coefficients, the scale

3 wavelet and scaling coefficients are calculated via
ffiffiffi

8
p

d3 ¼ fh3 �Rtg and
ffiffiffi

8
p

s3 ¼ fg3 �Rtg; respectively. This procedure may be repeated up to the scale J = log2T

with the resulting wavelet and scaling coefficients organized into the vector

w ¼ ðd1; d2; . . .; dJ ; sJÞ:
The wavelet coefficients from scale j = 1, 2, ..., J are associated with the frequency

interval [1/2j+1,1/2j] while the remaining scaling coefficients sJ are associated with the

remaining frequencies [0,1/2j+1]. In this specification, the wavelet coefficients dJ, ..., d1,

which can capture the higher frequency oscillations, represent increasingly fine scale

deviations from the smooth trend. sJ represents the smooth coefficients that capture the

trend.

Finally, using the wavelet coefficients, the wavelet variance for scale kj can be esti-

mated by:

r2ðkjÞ � VarðdjtÞ ðA:7Þ
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